Processing math: 5%

Sunday, August 29, 2021

Find all polynomials P(x) such that: P(x-1).P(x+1)=P(x2-1)

 Find all polynomials P(x) such that: P(x-1).P(x+1)=P(x2-1)

Solution

Suppose that α is a root of P(x)  then, P(α)=0

Therefore, P((α+1)-1)=0

Saturday, August 28, 2021

Find the last two digits of : N=(1!+2!+3!+...

Find the last two digits of : N=(1!+2!+3!+.......+101!)^101 

Note: This is equivalent to finding N(mod11).

ie: The remainder when dividing N by 100.

Observation: 10!\equiv0(mod100) Because, 10!=10...5...2

Therefore, N\equiv(1!+2!+3!+......+9!)^101(mod100)

                   N\equiv(1+2+6+24+20+20+40+20+80)^101(mod100)

                   N\equiv13^101(mod100)

Thursday, July 15, 2021

Prove that: A_n=3^(n+3)-4^(4n+2) is divided by 11

 Prove that: A_n=3^(n+3)-4^(4n+2) is divided by 11

Solution

We will prove by Mathematics Induction:

If n=0 then A_n=3^3-4^2=27-16=11 It is true that A_n is divided with 11

Assuming that: A_n is divided with 11 for n=k        (1)

We will prove it is true for n=k+1 then A_(k+1) is divided with 11

Wednesday, July 14, 2021

Prove that: forall x\inR : :|acosx+bsinx|\leqsqrt(a^2+b^2)

a. Prove that: forall x\inR : :|acosx+bsinx|\leqsqrt(a^2+b^2)

b. Find the maximum and minimum of f(x)=20cosx+21sinx+27

Solution

a. Prove |acosx+bsinx|\leqsqrt(a^2+b^2) forall x\inR

Assuming we have: 

acosx+bsinx=sqrt(a^2+b^2)(a/sqrt(a^2+b^2)cosx+b/sqrt(a^2+b^2)sinx)

X_1;X_2 are the root of : X^2-(2cost+3sint)X-11sin^2t=0 Find the minimum of A=X_1^2+X_1X_2+X_2^2.

X_1;X_2 are the root of : X^2-(2cost+3sint)X-11sin^2t=0 

Find the minimum of A=X_1^2+X_1X_2+X_2^2.

Solution

We can see that: A=X_1^2+X_1X_2+X_2^2

                                 =(X_1+X_2)^2-X_1X_2

Following Vieta's Formulas X^2-SX+P=0    (1)

Monday, July 12, 2021

Find all Polynomials P(x) which is satisfied that: (x-2010)P(x+67)=xP(x) (2010 Baltic Way)

 Find all Polynomials P(x) which is satisfied that:

(x-2010)P(x+67)=xP(x)

(2010 Baltic Way) 

Prove that: tan^3x/(1-3tan^2x)=1/8(tan3x-3tanx)

 a. Prove that: tan^3x/(1-3tan^2x)=1/8(tan3x-3tanx)

As we knew: tan3x=(3tanx-tan^3x)/(1-3tan^2x)

                                  =(3tanx-9tan^3x+8tan^3x)/(1-3tan^2x)

                                  =(8tan^3x+3tanx(1-3tan^2x))/(1-3tan^2x)

                                  =(8tan^3x)/(1-3tan^2x)+3tanx

Then,             tan3x-3tanx=(8tan^3x)/(1-3tan^2x)

Find the limit of S_n=2/(1.3)+2/(3.5)+2/(5.3)+.......+2/((2n+1)(2n+3))

 Find the limit of S_n=2/(1.3)+2/(3.5)+2/(5.3)+.......+2/((2n+1)(2n+3))

Solution

We can see that general term of this sequence is:

                    2/((2k+1)(2k+3))=1/(2k+1)-1/(2k+3)

Thursday, July 8, 2021

If g(x)=f(x)+1-x , find the value of g(2020)

 It is given function f(x) determine on R , satisfied that:

            f(1)=1

            f(x+5)\geqf(x)+5

            f(x+1)\leqf(x)+1

If g(x)=f(x)+1-x , find the value of g(2020)   \forallx,y\inR

If (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20) then find the coefficients of a_1 ; a_2 ; a_3 and a_20

  1. If (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20) then find the coefficients of a_1 ; a_2 ; a_3 and a_20

Solution

        From our hypothesis we already had:

                        (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20)

        We will find the coefficients of a_1 ; a_2 ; a_3 and a_20

        Which meant they are the coefficients of x ; x^2 ; x^3 and x^(20) .

        We can rewrite (1+2x+3x^2)^10=[1+x(2+3x)]^10

        We will use the Newton's Formula  

            (a+b)^n=\sum_{i=0}^nC(n,i)a^(n-i).b^i

        Then, [1+x(2+3x)]^10=C(10,0)+C(10,1)x(2+3x)+C(10,2)x^2.(2+3x)^2

                                            +C(10,3)x^3.(2+3x)^3+....+C(10,10)x^10.(2+3x)^10

        We observe that: 

            Coef(x)=2C(10,1)=20 then, a_1=20

            Coef(x^2)=2^2C(10,2)=4.45=180 then, a_2=180

           Coef(x^3)=12C(10,2)+8C(10,3)=45.12+120.8=1500 then a_3=1500

            Coef(x^20)=C(10,10).3^10=3^10 then, a_20=3^10     

Wednesday, July 7, 2021

Prove (21n+4)/(14n+3) Is Irreducible For Every Natural Number n

Prove (21n+4)/(14n+3) Is Irreducible For Every Natural Number n
Solution

 Solution 01

Denoting the greatest common divisor (GCD) of a and b (a,b) and we will use Euclidean Algorithm Theory.

                (21n+4,14n+3)=(7n+1,14n+3)=(7n+1,1)=1

It follows that (21n+4)/(14n+3) is irreducible. Q.E.D

 Solution 02

Tuesday, July 6, 2021

Vietnam Math Out Standing Student 2012-13

 

Vietnam Math Out Standing Student 2012-13

Problem 01: Solve the equation of: x^(4n)+\sqrt{x^{2n}+2012}=2012    for all n\in N.
Problem 02: It is given (U_n) which is determined by: 
                    U_1=3
                    U_(n+1)=1/3(2U_n+3/U_n^2)    for all n\in N.
                    Let's finding the limit of: \lim_{n\rightarrow\infty}(u_n).
Problem 03: It is given three non-negative real numbers x,y,z , Prove that:
                    1/x+1/y+1/z>36/(9+x^2y^2+y^2^2+z^2x^2).
Problem 04: Find roots positive numbers of equation:
                    \sqrt{x+2\sqrt3}=\sqrt y+\sqrt z

Solution

Monday, July 5, 2021

Find all functions f:R\rightarrow R such that: f(x)f(y)=f(xy-1)+xf(y)+yf(x) \forall x,y \inR


Find all functions f: R \rightarrow R Such that:
f(x)f(y)=f(xy-1)+xf(y)+yf(x)    \forall x ,y \inR

Solution

Replace : y=0 we will see that: f(x).f(0)=f(-1)+x.f(0)
Notice that: f(0) not equal to 0 then, f(x)=x+c     which c is a constant. We replaced to our hypothesis unsatisfactory. Then, f(0)=0 from that we can see that: f(-1)=0.

Sunday, April 4, 2021

1970 IMO Problems And Solutions

 

Problem 01

Let $M$ be a point on the side $AB$ of $\triangle ABC$. Let $r_1, r_2$, and $r$ be the inscribed circles of triangles $AMC, BMC$, and $ABC$. Let $q_1, q_2$, and $q$ be the radii of the exscribed circles of the same triangles that lie in the angle $ACB$. Prove that

$\frac{r_1}{q_1} \cdot \frac{r_2}{q_2} = \frac{r}{q}$.

Solution

Wednesday, March 31, 2021

1979 IMO Problems And Solutions

 

Problem 01

If $p$ and $q$ are natural numbers so that\[\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319},\]Prove that $p$ is divisible with $1979$.

Solution

Monday, March 29, 2021

1963 IMO Problems And Solutions

 

Problem 01

Find all real roots of the equation

$\sqrt{x^2-p}+2\sqrt{x^2-1}=x$,

where $p$ is a real parameter.

Solution

2007 IMO Problems And Solutions

 

Problem 01

Real numbers $a_1, a_2, \dots , a_n$ are given. For each $i$ ($1\le i\le n$) define

\[d_i=\max\{a_j:1\le j\le i\}-\min\{a_j:i\le j\le n\}\]

and let

\[d=\max\{d_i:1\le i\le n\}\].

(a) Prove that, for any real numbers $x_1\le x_2\le \cdots\le x_n$,

\[\max\{|x_i-a_i|:1\le i\le n\}\ge \dfrac{d}{2}   (*)\]

(b) Show that there are real numbers $x_1\le x_2\le x_n$ such that equality holds in (*)

Solution

2011 IMO Problems And Solutions

 

Problem 01

Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 +a_2 +a_3 +a_4$ by $s_A$. Let $n_A$ denote the number of pairs $(i, j)$ with $1 \leq  i < j \leq 4$ for which $a_i +a_j$ divides $s_A$. Find all sets $A$ of four distinct positive integers which achieve the largest possible value of $n_A$

Solution

2019 IMO Problems And Solutions

 

Problem 01

Let $\mathbb{Z}$ be the set of integers. Determine all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that, for all integers $a$ and $b$,\[f(2a) + 2f(b) = f(f(a + b)).\]

Solutions

Solution 1

Let us substitute $0$ in for $a$ to get\[f(0) + 2f(b) = f(f(b)).\]

Now, since the domain and range of $f$ are the same, we can let $x = f(b)$ and $f(0)$ equal some constant $c$ to get\[c + 2x = f(x).\]