Sunday, August 29, 2021

Find all polynomials `P(x)` such that: `P(x-1).P(x+1)=P(x^2-1)`

 Find all polynomials `P(x)` such that: `P(x-1).P(x+1)=P(x^2-1)`

Solution

Suppose that `\alpha` is a root of `P(x)`  then, `P(\alpha)=0`

Therefore, `P((\alpha+1)-1)=0`

Saturday, August 28, 2021

Find the last two digits of : `N=(1!+2!+3!+.......+101!)^101`

Find the last two digits of : `N=(1!+2!+3!+.......+101!)^101` 

Note: This is equivalent to finding `N(mod11)`.

ie: The remainder when dividing `N` by `100`.

Observation: `10!\equiv0(mod100)` Because, `10!=10...5...2`

Therefore, `N\equiv(1!+2!+3!+......+9!)^101(mod100)`

                   `N\equiv(1+2+6+24+20+20+40+20+80)^101(mod100)`

                   `N\equiv13^101(mod100)`

Thursday, July 15, 2021

Prove that: `A_n=3^(n+3)-4^(4n+2)` is divided by `11`

 Prove that: `A_n=3^(n+3)-4^(4n+2)` is divided by `11`

Solution

We will prove by Mathematics Induction:

If `n=0` then `A_n=3^3-4^2=27-16=11` It is true that `A_n` is divided with `11`

Assuming that: `A_n` is divided with `11` for `n=k`        `(1)`

We will prove it is true for `n=k+1` then `A_(k+1)` is divided with `11`

Wednesday, July 14, 2021

Prove that: `forall x\inR` : `:|acosx+bsinx|\leqsqrt(a^2+b^2)`

a. Prove that: `forall x\inR` : `:|acosx+bsinx|\leqsqrt(a^2+b^2)`

b. Find the maximum and minimum of `f(x)=20cosx+21sinx+27`

Solution

a. Prove `|acosx+bsinx|\leqsqrt(a^2+b^2)` `forall x\inR`

Assuming we have: 

`acosx+bsinx=sqrt(a^2+b^2)(a/sqrt(a^2+b^2)cosx+b/sqrt(a^2+b^2)sinx)`

`X_1;X_2` are the root of : `X^2-(2cost+3sint)X-11sin^2t=0` Find the minimum of `A=X_1^2+X_1X_2+X_2^2`.

`X_1;X_2` are the root of : `X^2-(2cost+3sint)X-11sin^2t=0` 

Find the minimum of `A=X_1^2+X_1X_2+X_2^2`.

Solution

We can see that: `A=X_1^2+X_1X_2+X_2^2`

                                 `=(X_1+X_2)^2-X_1X_2`

Following Vieta's Formulas `X^2-SX+P=0`    `(1)`

Monday, July 12, 2021

Find all Polynomials `P(x)` which is satisfied that: `(x-2010)P(x+67)=xP(x)` (2010 Baltic Way)

 Find all Polynomials `P(x)` which is satisfied that:

`(x-2010)P(x+67)=xP(x)`

(2010 Baltic Way) 

Prove that: `tan^3x/(1-3tan^2x)=1/8(tan3x-3tanx)`

 a. Prove that: `tan^3x/(1-3tan^2x)=1/8(tan3x-3tanx)`

As we knew: `tan3x=(3tanx-tan^3x)/(1-3tan^2x)`

                                  `=(3tanx-9tan^3x+8tan^3x)/(1-3tan^2x)`

                                  `=(8tan^3x+3tanx(1-3tan^2x))/(1-3tan^2x)`

                                  `=(8tan^3x)/(1-3tan^2x)+3tanx`

Then,             `tan3x-3tanx=(8tan^3x)/(1-3tan^2x)`

Find the limit of `S_n=2/(1.3)+2/(3.5)+2/(5.3)+.......+2/((2n+1)(2n+3))`

 Find the limit of `S_n=2/(1.3)+2/(3.5)+2/(5.3)+.......+2/((2n+1)(2n+3))`

Solution

We can see that general term of this sequence is:

                    `2/((2k+1)(2k+3))=1/(2k+1)-1/(2k+3)`

Thursday, July 8, 2021

If `g(x)=f(x)+1-x` , find the value of `g(2020)`

 It is given function `f(x)` determine on `R` , satisfied that:

            `f(1)=1`

            `f(x+5)\geqf(x)+5`

            `f(x+1)\leqf(x)+1`

If `g(x)=f(x)+1-x` , find the value of `g(2020)`   `\forallx,y\inR`

If `(1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20)` then find the coefficients of `a_1` ; `a_2` ; `a_3` and `a_20`

  1. If `(1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20)` then find the coefficients of `a_1` ; `a_2` ; `a_3` and `a_20`

Solution

        From our hypothesis we already had:

                        `(1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20)`

        We will find the coefficients of `a_1` ; `a_2` ; `a_3` and `a_20`

        Which meant they are the coefficients of `x` ; `x^2` ; `x^3` and `x^(20)` .

        We can rewrite `(1+2x+3x^2)^10=[1+x(2+3x)]^10`

        We will use the Newton's Formula  

            `(a+b)^n`=`\sum_{i=0}^nC(n,i)``a^(n-i).b^i`

        Then, `[1+x(2+3x)]^10=C(10,0)+C(10,1)x(2+3x)+C(10,2)x^2.(2+3x)^2`

                                            `+C(10,3)x^3.(2+3x)^3+....+C(10,10)x^10.(2+3x)^10`

        We observe that: 

            `Coef(x)=2C(10,1)=20` then, `a_1=20`

            `Coef(x^2)=2^2C(10,2)=4.45=180` then, `a_2=180`

           `Coef(x^3)=12C(10,2)+8C(10,3)=45.12+120.8=1500` then `a_3=1500`

            `Coef(x^20)=C(10,10).3^10=3^10` then, `a_20=3^10`     

Wednesday, July 7, 2021

Prove `(21n+4)/(14n+3)` Is Irreducible For Every Natural Number `n`

Prove `(21n+4)/(14n+3)` Is Irreducible For Every Natural Number `n`. 
Solution

 Solution 01

Denoting the greatest common divisor (GCD) of `a` and `b` `(a,b)` and we will use Euclidean Algorithm Theory.

                `(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,1)=1`

It follows that `(21n+4)/(14n+3)` is irreducible. Q.E.D

 Solution 02

Tuesday, July 6, 2021

Vietnam Math Out Standing Student 2012-13

 

Vietnam Math Out Standing Student 2012-13

Problem 01: Solve the equation of: `x^(4n)`+`\sqrt{x^{2n}+2012}``=2012`    for all `n\in N`.
Problem 02: It is given `(U_n)` which is determined by: 
                    `U_1=3`
                    `U_(n+1)=1/3(2U_n+3/U_n^2)`;     for all `n\in N`.
                    Let's finding the limit of: `\lim_{n\rightarrow\infty}(u_n)`.
Problem 03: It is given three non-negative real numbers `x,y,z` , Prove that:
                    `1/x+1/y+1/z``>36/(9+x^2y^2+y^2^2+z^2x^2)`.
Problem 04: Find roots positive numbers of equation:
                    `\sqrt{x+2\sqrt3}=\sqrt y+\sqrt z`

Solution

Monday, July 5, 2021

Find all functions `f:R\rightarrow R` such that: `f(x)f(y)=f(xy-1)+xf(y)+yf(x)` `\forall` `x,y` `\inR`


Find all functions `f: R \rightarrow R` Such that:
`f(x)f(y)=f(xy-1)+xf(y)+yf(x)`    `\forall` `x ,y ``\inR`

Solution

Replace : `y=0` we will see that: `f(x).f(0)=f(-1)+x.f(0)`
Notice that: `f(0)` not equal to `0` then, `f(x)=x+c`     which `c` is a constant. We replaced to our hypothesis unsatisfactory. Then, `f(0)=0` from that we can see that: `f(-1)=0`.

Sunday, April 4, 2021

1970 IMO Problems And Solutions

 

Problem 01

Let $M$ be a point on the side $AB$ of $\triangle ABC$. Let $r_1, r_2$, and $r$ be the inscribed circles of triangles $AMC, BMC$, and $ABC$. Let $q_1, q_2$, and $q$ be the radii of the exscribed circles of the same triangles that lie in the angle $ACB$. Prove that

$\frac{r_1}{q_1} \cdot \frac{r_2}{q_2} = \frac{r}{q}$.

Solution

Wednesday, March 31, 2021

1979 IMO Problems And Solutions

 

Problem 01

If $p$ and $q$ are natural numbers so that\[\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319},\]Prove that $p$ is divisible with $1979$.

Solution

Monday, March 29, 2021

1963 IMO Problems And Solutions

 

Problem 01

Find all real roots of the equation

$\sqrt{x^2-p}+2\sqrt{x^2-1}=x$,

where $p$ is a real parameter.

Solution

2007 IMO Problems And Solutions

 

Problem 01

Real numbers $a_1, a_2, \dots , a_n$ are given. For each $i$ ($1\le i\le n$) define

\[d_i=\max\{a_j:1\le j\le i\}-\min\{a_j:i\le j\le n\}\]

and let

\[d=\max\{d_i:1\le i\le n\}\].

(a) Prove that, for any real numbers $x_1\le x_2\le \cdots\le x_n$,

\[\max\{|x_i-a_i|:1\le i\le n\}\ge \dfrac{d}{2}   (*)\]

(b) Show that there are real numbers $x_1\le x_2\le x_n$ such that equality holds in (*)

Solution

2011 IMO Problems And Solutions

 

Problem 01

Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 +a_2 +a_3 +a_4$ by $s_A$. Let $n_A$ denote the number of pairs $(i, j)$ with $1 \leq  i < j \leq 4$ for which $a_i +a_j$ divides $s_A$. Find all sets $A$ of four distinct positive integers which achieve the largest possible value of $n_A$

Solution

2019 IMO Problems And Solutions

 

Problem 01

Let $\mathbb{Z}$ be the set of integers. Determine all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that, for all integers $a$ and $b$,\[f(2a) + 2f(b) = f(f(a + b)).\]

Solutions

Solution 1

Let us substitute $0$ in for $a$ to get\[f(0) + 2f(b) = f(f(b)).\]

Now, since the domain and range of $f$ are the same, we can let $x = f(b)$ and $f(0)$ equal some constant $c$ to get\[c + 2x = f(x).\]