Find all functions f:R →R Such that:
f(x)f(y)=f(xy-1)+xf(y)+yf(x) ∀ x ,y∈R
Solution
Replace : y=0 we will see that: f(x).f(0)=f(-1)+x.f(0)
Notice that: f(0) not equal to 0 then, f(x)=x+c which c is a constant. We replaced to our hypothesis unsatisfactory. Then, f(0)=0 from that we can see that: f(-1)=0.
From our hypothesis, we replace x=y=1 then, f(1)2=2.f(1) → f(1)=0 or f(1)=2.
If we replace y=-1 into our hypothesis,
f(-x-1)=f(x) .
If we replace y=-y-1 into our hypothesis, we will get:
f(x).f(-y-1)=f[x(-y-1)-1]+x.f(-y-1)+(-y-1)f(x)
But, f(-y-1)=f(y) and f[x(-y-1)-1]=f(xy+x)
f(xy-1)+yf(x)+xf(y)=f(xy+x)+x.f(y)-(y+1)f(x) ∀ x ,y∈R
Then, f(xy-1)+yf(x)=f(xy+x)+x.f(y)-(y+1)f(x) ∀ x ,y∈R
In here, x is not equal to 0 we replace y=1x then
f(x+1)=x+2x.f(x) or f(x-1)=x-1x+1.f(x)
Right here, If we replace y=1 into our first hypothesis, we will get:
f(x).f(1)=f(x-1)+x.f(1)+f(x)=x-1x+1.f(x)+x.f(1)+f(x)
Case f(1)=0 then, f≡0
Case f(1)=2 then, f(x)=x(x+1)
Hence, there are two functions of f(x) which are :
f(x)=0 and f(x)=x(x+1) for all x∈R
Solution by: Thin Sokkean
No comments:
Post a Comment