Processing math: 100%

Monday, July 5, 2021

Find all functions f:RR such that: f(x)f(y)=f(xy-1)+xf(y)+yf(x) x,y R


Find all functions f:R R Such that:
f(x)f(y)=f(xy-1)+xf(y)+yf(x)     x ,yR

Solution

Replace : y=0 we will see that: f(x).f(0)=f(-1)+x.f(0)
Notice that: f(0) not equal to 0 then, f(x)=x+c     which c is a constant. We replaced to our hypothesis unsatisfactory. Then, f(0)=0 from that we can see that: f(-1)=0.
From our hypothesis, we replace x=y=1 then, f(1)2=2.f(1) f(1)=0 or f(1)=2.
If we replace y=-1 into our hypothesis,
                    f(-x-1)=f(x) .
If we replace y=-y-1 into our hypothesis, we will get:
    f(x).f(-y-1)=f[x(-y-1)-1]+x.f(-y-1)+(-y-1)f(x)
But, f(-y-1)=f(y) and f[x(-y-1)-1]=f(xy+x)
        f(xy-1)+yf(x)+xf(y)=f(xy+x)+x.f(y)-(y+1)f(x)         x ,yR
Then, f(xy-1)+yf(x)=f(xy+x)+x.f(y)-(y+1)f(x)                 x ,yR
In here, x is not equal to 0 we replace y=1x then
       f(x+1)=x+2x.f(x) or f(x-1)=x-1x+1.f(x)
Right here, If we replace y=1 into our first hypothesis, we will get:
        f(x).f(1)=f(x-1)+x.f(1)+f(x)=x-1x+1.f(x)+x.f(1)+f(x)
Case f(1)=0 then, f0
Case f(1)=2 then, f(x)=x(x+1)
Hence, there are two functions of f(x) which are :
                f(x)=0    and  f(x)=x(x+1)  for all xR

Solution by: Thin Sokkean

No comments:

Post a Comment