Loading [MathJax]/jax/output/CommonHTML/jax.js

Saturday, November 28, 2020

Mathematics Problem Everyday

Mathematics Problem Everyday


1- It is given that : En=831n+709n-743n-610n for all natural number n.
    Prove that: En is divided by 189 for all natural number n.
    Hint: Using modulo formula and gcd(9,21)=189
2- Prove that for all natural number n we have the following inequation:
           1+12+13+....+1n+1<2n+1 
    Hint: Using Mathematics Induction.
3- It is given natural real sequence satisfied that: 
                    U0=2 and Un+1=2+Un
    a. Find the Un which is functioned to n.
    b. Find the product of Pn=U0.U1.U2......Un
4- There is a 4 digits number with every single digit is a ; a ; b ; b correct order. 
    Find those number If It is a perfect square.
5- It is given that : 332=1089 , 3332=110889 , 33332=11108889 , 333332=1111088889.
    From the following given, let find the general term of it and prove.
6- a. Prove that: 1+1cosx=cot(x2)cotx.
    b. Calculate the product of :
    Pn=(1+1cosa)(1+1cos(a2))(1+1cos(a22))......(1+1cos(a2n)).
7- Calculating the value of : S=cos3(π9)-cos3(4π9)+cos3(7π9).
8- Calculating the sum of : Sn=9+99+999+....+999 which is n times of number 9.
9- Find all pair of integer (m,n)>2satisfied that: for all positive integer 
                    a  we got am+a-1an+a2-1 be a integer. 
        Solution is (m,n)=(5,3)
10- It is given 3 positive integer a,b,c satisfied that a+b+c=10.
       Find the minimum value of P=a×b×c.
        Solution is P=36.
11- Find the exact value of sin(π10) and cos(π10).
12- It is given two positive real number a and b. Prove that: (1+a)(1+b)(1+ab)2
       From the proven, let's minimum of function :
                f(x)=(1+4sin2x)(1+4cos2x) for all  real number x.
13- It is given three real numbers a,b,c .
        Prove that: a2+b2+c2 ≥ ab+bc+ac
14- It is given n positive real numbers a1;a2;a3;.....;an satisfied that
        a1.a2.a3......an=1.
       Prove that:  (1+a1)(1+a2)(a+a3)........(1+an) ≥ 2n.
15- It is given m,n be the positive integers . Prove that for all real positive number x 
             xmn-1m xn-1x
16- For all real number x prove that: 
            (1+sinx)(1+cosx) 32+2
17- It is given xn=22n+1 for n=1,2,3......
       Prove that: 1x1+2x2+23x3+......+2n-1xn < 13.

18- It is given function y=x2+2mx+3m-82(x2+1) which x is real number and m is a 
       parameter of the problem. Is It possible that we can find the value of m to make 
       function y be the value of cos of one single angle ?
19- It is given two variables function:
            f(x,y)=(x2-y2)(1-x2y2)(1+x2)2(1+y2)2;x,y be real number.
       Prove that: |f(x,y)|14.
20- It is given θ be a real number such that 0<θ<π2.
       Prove that: (sinθ)cosθ+(cosθ)sinθ>1.
21- There are three real number: a>0;b>;c>0 Prove that:
        ab(a+b)+bc(b+c)+ac(a+c)6abc
22- Solve the equation below:
       9(x2-x)+3(1-x2)=3(x-1)2+1
23- Let's finding both functions f(x) and g(x) which satisfied that: 
               f(2x-1)+2g(3x+1)=x2
                f(4x-3)-g(6x-2)=-2x2+2x+1
23- Find the sum of:
       Sn=tana+12tan(a2)+122tan(a22)+....+12ntan(a2n)
24- It is 3rd degree polynomial P(x) which is satisfied that:
                    P(x)+2 is divided by (x+1)2
                    P(x)-2 is divided by (x-1)2
      Determind the polynomial P(x) ?
25- Let A=(13+i)n-(13-i)n for all natural number n.
       Prove tha: A=i.2n+1(3)n.sin(nπ3).
26- Solve the equation in integer set :
                    47x+29y=1
27- Find all function f(x) possible which is satisfied that:
                    f(x+x2-2x+1)=x2-1x2+1
28- It is given sequence of real number (an):n1satisfied that: a1=1;a2=3
       and an+2=(n+3)an+1-(n+2)an ; nR.
      Evaluate the value of n if an0(mod11).
29- Prove that for all positive integer n , 3n+n3 is divided by 7 if only if 3nn3+1 is divided by 7.
30- Find the sum of:
          Sn=31!+2!+3!+42!+3!+4!+.....+n+2n!+(n+1)!+(n+2)!
31- Prove that: 16<80k=11k<17. (China 1992
32- Find all real number x satisfied the equation below:
                           2x+3x-4x+6x-9x=1     (Korean 2000)
33- It is given X1,X2,X3,.......,Xn be positive real number satisfied that:
       ni=1Xi=1. Prove that :
            (ni=1Xi)(ni=111+Xi)n2n+1
(China Team Selectioin Test 2006)
34- There are a,b,c be nonnegative real number which ab+bc+ac=13
        Prove that: 1a2-bc+1+1b2-ac+1+1c2-ab+113
(China Team Selection Test 2005)
35- It is given sequence of real number such that: a1=1 a2=5 and
            an+1=anan-1(an)2+(an-1)2+1n2
       Determine the general term of (an).
(China 2002)
36- Find all function f(x):RR which is satisfied the equivalent that
        f([x]y)=f(x)[f(y)] is true for all x,yR.
    [a] is the greatest integer a.
(IMO 2010)
37- It is given function f(x)=x+4x+1 which is xis¬belong-1 
       Evaluate the value of function : fn[f[....f[f(x)]....]].
38- It is given function with the relative of : 
       2f(π2-x)+f(π2+x)=sinx+33cosx
       Find the value of θ and r if f(x)=rsin(x+θ)
39- It is given equation of real number : x3-ax2+bx-c=0 has three roots.
       Find the possible minimum value of 1+a+b+c3+2a+b-cb .

40- Find all pair of integer (a,b) which are satisfied that x2y+x+y is dived by xy2+y+7

No comments:

Post a Comment