Evaluate the value of :
1. `A=3/(1!+2!+3!)+(4!)/(2!+3!+4!)+......+n/((n-2)!+(n-1)!+n!)`
Solution:
Suppose that:
`k/((k-2)!+(k-1)!+k!`=`k/((k-2)![1+(k-1)+k(k-1)]`
`=k/((k-2)!k^2)`
`=1/((k-2)!k)` `=(k-1)/((k-2)!(k-1)k`
`=(k-1)/(k!)` `=1/((k-1)!)-1/(k!)`
Then, we replace the value of `k` from `3` to `n` :
`A=(1/(2!)-1/(3!))+(1/(3!)-1/(4!))+(1/(4!)-1/(5!))+..........+(1/((n-1)!)-1/(n!))`
Therefore, `A=(1/(2!)-1/(n!))` `=(n!-2)/(2.n!)`
Or You Can Check Out My Video Here: My Video
No comments:
Post a Comment