Processing math: 100%

Saturday, January 2, 2021

IMO 2019 in South Africa

 Let Z be the set of integers. Determine all function f:ZZ such that, for all integers a and b 

                        f(2a)+2f(b)=f(f(a+b))                      (1)

Answer: The solution are f(n)=0 and f(n)=2n+k for any constant kZ

Substituting a=0,b=n+1 gives  f(f(n+1))=f(0)+2f(n+1)

Substituting a=1,b=n gives f(f(n+1))=f(2)+2f(n)

    In particular, f(0)+2f(n+1)=f(2)+2f(n), and so  f(n+1)-f(n)=12(f(2)-f(0)) .

Thus f(n+1)-f(n) must be constant. Since f is defined only on Z, this tells us that f must be a linear function; writef(n)=Mn+K for arbitrary constants M and K, and we need only determine which choices of M and K work.

 Now, (1) becomes 

                        2Ma+K+2(Mb+K)=M(M(a+b)+K)+K 

which we may rearrange to form

                         (M-2)(M(a+b)+K)=0

    Thus, either M=2, or M(a+b)+K=0 for all values of a+b. In particular, the only possible solutions are f(n)=0 and f(n)=2n+K for any constant KZ, and these are easily seen to work.

No comments:

Post a Comment