Processing math: 100%

Wednesday, July 14, 2021

Prove that: xR : |acosx+bsinxa2+b2

a. Prove that: xR : |acosx+bsinxa2+b2

b. Find the maximum and minimum of f(x)=20cosx+21sinx+27

Solution

a. Prove |acosx+bsinx|a2+b2 xR

Assuming we have: 

acosx+bsinx=a2+b2(aa2+b2cosx+ba2+b2sinx)


Let  sinα=aa2+b2 which's -1sinα1

Then, cosα=1-sin2α because sin2α+cos2α=1

            cosα=1-(aa2+b2)2=1-a2a2+b2=ba2+b2

Therefore: acosx+bsinx=a2+b2(sinαcosx+cosαsinx)

By using formula sinacosb+sinbcosa=sin(a+b)

Then acosx+bsinx=a2+b2sin(x+α)

         |acosx+bsinx|=a2+b2|sin(x+α)|

As we knew: x;αR -1sin(x-+α)1

Then, |sin(x+α)|1

          a2+b2|sin(x+α)|a2+b2

Hence, |acosx+bsinx|a2+b2

b. Find the max and min of f(x)=20cosx+21sinx+27

        f(x)=27+20cosx+21sinx

              =27+29(2029cosx+2129sinx)

              =27+29(sinαcosx+cosαsinx) which α=arcsin(2029)

             =27+29sin(x+α)

As we proved above: -2929sin(x+α)29

Then, 27-2927+29sin(x+α)27+29

           -2f(x)56

Thus, Maxf(x)=56 and Minf(x)=-2


Solution by: Thin Sokkean

No comments:

Post a Comment