a. Prove that: `forall x\inR` : `:|acosx+bsinx|\leqsqrt(a^2+b^2)`
b. Find the maximum and minimum of `f(x)=20cosx+21sinx+27`
Solution
a. Prove `|acosx+bsinx|\leqsqrt(a^2+b^2)` `forall x\inR`
Assuming we have:
`acosx+bsinx=sqrt(a^2+b^2)(a/sqrt(a^2+b^2)cosx+b/sqrt(a^2+b^2)sinx)`
Let `sin\alpha=a/sqrt(a^2+b^2)` which's `-1\leqsin\alpha\leq1`
Then, `cos\alpha=sqrt(1-sin^2\alpha)` because `sin^2\alpha+cos^2\alpha=1`
`cos\alpha=sqrt(1-(a/sqrt(a^2+b^2))^2)=sqrt(1-a^2/(a^2+b^2))=b/(sqrt(a^2+b^2)`
Therefore: `acosx+bsinx=sqrt(a^2+b^2)(sin\alphacosx+cos\alphasinx)`
By using formula `sinacosb+sinbcosa=sin(a+b)`
Then `acosx+bsinx=sqrt(a^2+b^2)sin(x+\alpha)`
`|acosx+bsinx|=sqrt(a^2+b^2)|sin(x+\alpha)|`
As we knew: `forall x;\alpha\inR` `-1\leqsin(x-+\alpha)\leq1`
Then, `|sin(x+\alpha)|\leq1`
`sqrt(a^2+b^2)|sin(x+\alpha)|\leqsqrt(a^2+b^2)`
Hence, `|acosx+bsinx|\leqsqrt(a^2+b^2)`
b. Find the max and min of `f(x)=20cosx+21sinx+27`
`f(x)=27+20cosx+21sinx`
`=27+29(20/29cosx+21/29sinx)`
`=27+29(sin\alphacosx+cos\alphasinx)` which `\alpha=arcsin(20/29)`
`=27+29sin(x+\alpha)`
As we proved above: `-29\leq29sin(x+\alpha)\leq29`
Then, `27-29\leq27+29sin(x+\alpha)\leq27+29`
`-2\leqf(x)\leq56`
Thus, Max`f(x)=56` and Min`f(x)=-2`
Solution by: Thin Sokkean
No comments:
Post a Comment