a. Prove that: ∀x∈R : |acosx+bsinx∣≤√a2+b2
b. Find the maximum and minimum of f(x)=20cosx+21sinx+27
Solution
a. Prove |acosx+bsinx|≤√a2+b2 ∀x∈R
Assuming we have:
acosx+bsinx=√a2+b2(a√a2+b2cosx+b√a2+b2sinx)
Let sinα=a√a2+b2 which's -1≤sinα≤1
Then, cosα=√1-sin2α because sin2α+cos2α=1
cosα=√1-(a√a2+b2)2=√1-a2a2+b2=b√a2+b2
Therefore: acosx+bsinx=√a2+b2(sinαcosx+cosαsinx)
By using formula sinacosb+sinbcosa=sin(a+b)
Then acosx+bsinx=√a2+b2sin(x+α)
|acosx+bsinx|=√a2+b2|sin(x+α)|
As we knew: ∀x;α∈R -1≤sin(x-+α)≤1
Then, |sin(x+α)|≤1
√a2+b2|sin(x+α)|≤√a2+b2
Hence, |acosx+bsinx|≤√a2+b2
b. Find the max and min of f(x)=20cosx+21sinx+27
f(x)=27+20cosx+21sinx
=27+29(2029cosx+2129sinx)
=27+29(sinαcosx+cosαsinx) which α=arcsin(2029)
=27+29sin(x+α)
As we proved above: -29≤29sin(x+α)≤29
Then, 27-29≤27+29sin(x+α)≤27+29
-2≤f(x)≤56
Thus, Maxf(x)=56 and Minf(x)=-2
Solution by: Thin Sokkean
No comments:
Post a Comment