Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Wednesday, July 14, 2021

X1;X2 are the root of : X2-(2cost+3sint)X-11sin2t=0 Find the minimum of A=X21+X1X2+X22.

X1;X2 are the root of : X2-(2cost+3sint)X-11sin2t=0 

Find the minimum of A=X21+X1X2+X22.

Solution

We can see that: A=X21+X1X2+X22

                                 =(X1+X2)2-X1X2

Following Vieta's Formulas X2-SX+P=0    (1)

Then X1+X2=S  and X1X2=P which X1;X2 are the roots of equation (1)

We easily see that: X1+X2=2cost+3sint

                                  X1X2=-11sin2t

Therefore: A=(2cost+3sint)2+11sin2t

                     =4cos2t+12sintcost+11sin2t+9sin2t

                     =4cos2t+12sintcost+20sin2t

                     =4+6sin2t+16sin2t

                     =4+6sin2t+8(1-cos2t)

                     =4+6sin2t+8-8cos2t

                     =12+2(3sin2t-4cos2t)

                     =12+10(35sin2t-45cos2t)

                     =12+10sin(2t-a)   when a=arcsin(45)

As we knew: for all t;aR 

                    -1sinx1  where is x=2t-a

Hence, Min(A)=12-10=2

Solution by: Thin Sokkean

No comments:

Post a Comment