`X_1;X_2` are the root of : `X^2-(2cost+3sint)X-11sin^2t=0`
Find the minimum of `A=X_1^2+X_1X_2+X_2^2`.
Solution
We can see that: `A=X_1^2+X_1X_2+X_2^2`
`=(X_1+X_2)^2-X_1X_2`
Following Vieta's Formulas `X^2-SX+P=0` `(1)`
Then `X_1+X_2=S` and `X_1X_2=P` which `X_1;X_2` are the roots of equation `(1)`
We easily see that: `X_1+X_2=2cost+3sint`
`X_1X_2=-11sin^2t`
Therefore: `A=(2cost+3sint)^2+11sin^2t`
`=4cos^2t+12sintcost+11sin^2t+9sin^2t`
`=4cos^2t+12sintcost+20sin^2t`
`=4+6sin2t+16sin^2t`
`=4+6sin2t+8(1-cos2t)`
`=4+6sin2t+8-8cos2t`
`=12+2(3sin2t-4cos2t)`
`=12+10(3/5sin2t-4/5cos2t)`
`=12+10sin(2t-a)` when `a=arcsin(4/5)`
As we knew: for all `t;a\inR`
`-1\leqsinx``\leq1` where is `x=2t-a`
Hence, Min`(A)=12-10=2`
Solution by: Thin Sokkean
No comments:
Post a Comment