Find all Polynomials P(x) which is satisfied that:
(x-2010)P(x+67)=xP(x)
(2010 Baltic Way)
Noted that: 2010=30.67
- If x=0↔(-2010)P(67)=0→P(67)=0
- If x=2010↔0P(2007)=2010P(2010)→P(2010)=0
- If x=67↔(67-2010)P(2.67)=67P(67)→P(2.67)=0
- If x=2.67↔(2.67-2010)P(3.67)=2.67P(2.67)=0→P(3.67)=0
we will prove this statement by Mathematics Induction
For all k∈n and 1≤n≤30 we will prove P(k.67)=0
k=0→P(0)=0 It is true for k=0
We are assuming that's true with k=n→P(n.67)=0(⋅)
We will prove It is true till k=n+1→P[(n+1)67]=0?
From: (x-2010)P(x+67)=xP(x)
Then, (n.67-2010)P(n.67+67)=n.67P(n.67)=0 Because from our assuming!(⋅)
→P(n.67+67)=0↔P[(n+1).67]=0
Thus, P(n.67)=0 for all 1≤n≤30
We can write that:
P(x)=(x-67)(x-2.67)(x-3.67)........(x-30.67)Q(x)
Then, xP(x)=x(x-67)(x-2.67).....(x-30.67)Q(x) (1)
From our hypothesis: (x-2010)P(x+67)=xP(x)
But, (x-2010)P(x+67)=(x-2010)x(x-67)(x-2.67).....(x-29.67)Q(x+67) (2)
From both equations (1) and (2): we will see that
Q(x)=Q(x+67)
We easily see that Q(x)=C∣C∈R
Hence, P(x)=(x-67)(x-2.67)(x-3.67)........(x-30.67)C∣C∈R
No comments:
Post a Comment