Processing math: 100%

Monday, July 12, 2021

Find all Polynomials P(x) which is satisfied that: (x-2010)P(x+67)=xP(x) (2010 Baltic Way)

 Find all Polynomials P(x) which is satisfied that:

(x-2010)P(x+67)=xP(x)

(2010 Baltic Way) 



Noted that: 2010=30.67

  • If x=0(-2010)P(67)=0P(67)=0
We can write that: P(x)=(x-67)Q(x)

  • If x=20100P(2007)=2010P(2010)P(2010)=0
We can write that: P(x)=(x-2010)G(x)

  • If x=67(67-2010)P(2.67)=67P(67)P(2.67)=0
  • If x=2.67(2.67-2010)P(3.67)=2.67P(2.67)=0P(3.67)=0
As the same replacing, we consider that for all 1n30 then P(n.67)=0

we will prove this statement by Mathematics Induction 

For all kn and 1n30 we will prove P(k.67)=0

k=0P(0)=0 It is true for k=0

We are assuming that's true with k=nP(n.67)=0()

We will prove It is true till k=n+1P[(n+1)67]=0?

From: (x-2010)P(x+67)=xP(x)

Then, (n.67-2010)P(n.67+67)=n.67P(n.67)=0 Because from our assuming!()

            P(n.67+67)=0P[(n+1).67]=0 

Thus, P(n.67)=0 for all 1n30

We can write that:

P(x)=(x-67)(x-2.67)(x-3.67)........(x-30.67)Q(x)

Then,    xP(x)=x(x-67)(x-2.67).....(x-30.67)Q(x)    (1)

From our hypothesis: (x-2010)P(x+67)=xP(x)

But, (x-2010)P(x+67)=(x-2010)x(x-67)(x-2.67).....(x-29.67)Q(x+67)    (2)

From both equations (1) and (2): we will see that 

                Q(x)=Q(x+67) 

We easily see that Q(x)=CCR
Hence, 
P(x)=(x-67)(x-2.67)(x-3.67)........(x-30.67)CCR

No comments:

Post a Comment