Processing math: 100%

Monday, July 12, 2021

Prove that: tan3x1-3tan2x=18(tan3x-3tanx)

 a. Prove that: tan3x1-3tan2x=18(tan3x-3tanx)

As we knew: tan3x=3tanx-tan3x1-3tan2x

                                  =3tanx-9tan3x+8tan3x1-3tan2x

                                  =8tan3x+3tanx(1-3tan2x)1-3tan2x

                                  =8tan3x1-3tan2x+3tanx

Then,             tan3x-3tanx=8tan3x1-3tan2x

Hence,         tan3x1-3tan2x=18(tan3x-3tanx)

b. Find the sum of Sn=nk=13ktan3(a3k)1-3tan2(a3k)

From our premise above: tan3x1-3tan2x=18(tan3x-3tanx)

Then,    3ktan3(a3k)1-3tan2(a3k)=3k8(tan(a3k-1)-3tan(a3k)

k=13tan3(a3)1-3tan2(a3)=318(tana-3tan(a3))

k=232tan3(a32)1-3tan2(a32)=328(tan(a3)-3tan(a32))

....................................................................................................................................

....................................................................................................................................

k=n3ntan3(a3n)1-3tan2(a3n)=3n8(tan(a3n-1)-3tan(a3n))

Sum side to side:

Sn=38tana-3n+18tan(a3n)=38(tana-3ntan(a3n))

No comments:

Post a Comment