a. Prove that: `tan^3x/(1-3tan^2x)=1/8(tan3x-3tanx)`
As we knew: `tan3x=(3tanx-tan^3x)/(1-3tan^2x)`
`=(3tanx-9tan^3x+8tan^3x)/(1-3tan^2x)`
`=(8tan^3x+3tanx(1-3tan^2x))/(1-3tan^2x)`
`=(8tan^3x)/(1-3tan^2x)+3tanx`
Then, `tan3x-3tanx=(8tan^3x)/(1-3tan^2x)`
Hence, `(tan^3x)/(1-3tan^2x)=1/8(tan3x-3tanx)`
b. Find the sum of `S_n=\sum_{k=1}^{n}(3^ktan^3(a/3^k))/(1-3tan^2(a/3^k))`
From our premise above: `(tan^3x)/(1-3tan^2x)=1/8(tan3x-3tanx)`
Then, `(3^ktan^3(a/3^k))/(1-3tan^2(a/3^k))=3^k/8(tan(a/3^(k-1))-3tan(a/3^k)`
`k=1\rightarrow(3tan^3(a/3))/(1-3tan^2(a/3))=3^1/8(tana-3tan(a/3))`
`k=2\rightarrow(3^2tan^3(a/3^2))/(1-3tan^2(a/3^2))=3^2/8(tan(a/3)-3tan(a/3^2))`
....................................................................................................................................
....................................................................................................................................
`k=n\rightarrow(3^ntan^3(a/3^n))/(1-3tan^2(a/3^n))=3^n/8(tan(a/3^(n-1))-3tan(a/3^n))`
Sum side to side:
`S_n=3/8tana-3^(n+1)/8tan(a/3^n)=3/8(tana-3^ntan(a/3^n))`
No comments:
Post a Comment