a. Prove that: tan3x1-3tan2x=18(tan3x-3tanx)
As we knew: tan3x=3tanx-tan3x1-3tan2x
=3tanx-9tan3x+8tan3x1-3tan2x
=8tan3x+3tanx(1-3tan2x)1-3tan2x
=8tan3x1-3tan2x+3tanx
Then, tan3x-3tanx=8tan3x1-3tan2x
Hence, tan3x1-3tan2x=18(tan3x-3tanx)
b. Find the sum of Sn=n∑k=13ktan3(a3k)1-3tan2(a3k)
From our premise above: tan3x1-3tan2x=18(tan3x-3tanx)
Then, 3ktan3(a3k)1-3tan2(a3k)=3k8(tan(a3k-1)-3tan(a3k)
k=1→3tan3(a3)1-3tan2(a3)=318(tana-3tan(a3))
k=2→32tan3(a32)1-3tan2(a32)=328(tan(a3)-3tan(a32))
....................................................................................................................................
....................................................................................................................................
k=n→3ntan3(a3n)1-3tan2(a3n)=3n8(tan(a3n-1)-3tan(a3n))
Sum side to side:
Sn=38tana-3n+18tan(a3n)=38(tana-3ntan(a3n))
No comments:
Post a Comment