Processing math: 100%

Monday, July 12, 2021

Find the limit of Sn=21.3+23.5+25.3+.......+2(2n+1)(2n+3)

 Find the limit of Sn=21.3+23.5+25.3+.......+2(2n+1)(2n+3)

Solution

We can see that general term of this sequence is:

                    2(2k+1)(2k+3)=12k+1-12k+3


We will replace that value of k=0,1,2,....,n

            k=121.3=1-13

            k=223.5=13-15

            k=325.7=15-17

            ...........................................................

            ...........................................................

            k=n2(2n+1)(2n+3)=12n+1-12n+3

Sum of side to side:

Then,     Sn=1-12n+3

When n to infinity then 12n+30

Hence, Limit of Sn is 1.

Solution by Thin Sokkean

No comments:

Post a Comment