Find the limit of `S_n=2/(1.3)+2/(3.5)+2/(5.3)+.......+2/((2n+1)(2n+3))`
Solution
We can see that general term of this sequence is:
`2/((2k+1)(2k+3))=1/(2k+1)-1/(2k+3)`
We will replace that value of `k=0,1,2,....,n`
`k=1\leftrightarrow2/(1.3)=1-1/3`
`k=2\leftrightarrow2/(3.5)=1/3-1/5`
`k=3\leftrightarrow2/(5.7)=1/5-1/7`
...........................................................
...........................................................
`k=n\leftrightarrow2/((2n+1)(2n+3))=1/(2n+1)-1/(2n+3)`
Sum of side to side:
Then, `S_n=1-1/(2n+3)`
When `n` to infinity then `1/(2n+3)\rightarrow0`
Hence, Limit of `S_n` is `1`.
Solution by Thin Sokkean
No comments:
Post a Comment