Find the limit of Sn=21.3+23.5+25.3+.......+2(2n+1)(2n+3)
Solution
We can see that general term of this sequence is:
2(2k+1)(2k+3)=12k+1-12k+3
We will replace that value of k=0,1,2,....,n
k=1↔21.3=1-13
k=2↔23.5=13-15
k=3↔25.7=15-17
...........................................................
...........................................................
k=n↔2(2n+1)(2n+3)=12n+1-12n+3
Sum of side to side:
Then, Sn=1-12n+3
When n to infinity then 12n+3→0
Hence, Limit of Sn is 1.
Solution by Thin Sokkean
No comments:
Post a Comment