It is given function `f(x)` determine on `R` , satisfied that:
`f(1)=1`
`f(x+5)\geqf(x)+5`
`f(x+1)\leqf(x)+1`
If `g(x)=f(x)+1-x` , find the value of `g(2020)` `\forallx,y\inR`
From the problem above, we had:
`f(x+5)\geqf(x)+5`
`f(x+1)\leqf(x)+1`
We will have: `f(x)+5\leqf(x+5)\leqf(x+4)+1`
Meanwhile `f(x+4)\leqf(x+3)+1`
Then, `f(x)+5\leqf(x+1)+4\leqf(x)+5`
Thus, `f(x+1)+4=f(x)+5` or `f(x+1)-f(x)=1`
`x=1` `f(2)-f(1)=1`
`x=2` `f(3)-f(2)=1`
.....................................
.....................................
`x=2019` `f(2020)-f(2019)=1`
Plus side to side: `f(2020)-f(1)=2019`
Then, `f(2020)=2019+f(1)` or `f(2020)=2020`
Let's `g(x)=f(x)+1-x`
If `x=2020` then, `g(2020)=f(2020)+1-2020=1`
Hence, `g(2020)=1`
No comments:
Post a Comment