It is given function f(x) determine on R , satisfied that:
f(1)=1
f(x+5)≥f(x)+5
f(x+1)≤f(x)+1
If g(x)=f(x)+1-x , find the value of g(2020) ∀x,y∈R
From the problem above, we had:
f(x+5)≥f(x)+5
f(x+1)≤f(x)+1
We will have: f(x)+5≤f(x+5)≤f(x+4)+1
Meanwhile f(x+4)≤f(x+3)+1
Then, f(x)+5≤f(x+1)+4≤f(x)+5
Thus, f(x+1)+4=f(x)+5 or f(x+1)-f(x)=1
x=1 f(2)-f(1)=1
x=2 f(3)-f(2)=1
.....................................
.....................................
x=2019 f(2020)-f(2019)=1
Plus side to side: f(2020)-f(1)=2019
Then, f(2020)=2019+f(1) or f(2020)=2020
Let's g(x)=f(x)+1-x
If x=2020 then, g(2020)=f(2020)+1-2020=1
Hence, g(2020)=1
No comments:
Post a Comment