- If `(1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20)` then find the coefficients of `a_1` ; `a_2` ; `a_3` and `a_20`
Solution
From our hypothesis we already had:
`(1+2x+3x^2)^10=a_0+a_1x+a_2x^2+.......+a_(20)x^(20)`
We will find the coefficients of `a_1` ; `a_2` ; `a_3` and `a_20`
Which meant they are the coefficients of `x` ; `x^2` ; `x^3` and `x^(20)` .
We can rewrite `(1+2x+3x^2)^10=[1+x(2+3x)]^10`
We will use the Newton's Formula
`(a+b)^n`=`\sum_{i=0}^nC(n,i)``a^(n-i).b^i`
Then, `[1+x(2+3x)]^10=C(10,0)+C(10,1)x(2+3x)+C(10,2)x^2.(2+3x)^2`
`+C(10,3)x^3.(2+3x)^3+....+C(10,10)x^10.(2+3x)^10`
We observe that:
`Coef(x)=2C(10,1)=20` then, `a_1=20`
`Coef(x^2)=2^2C(10,2)=4.45=180` then, `a_2=180`
`Coef(x^3)=12C(10,2)+8C(10,3)=45.12+120.8=1500` then `a_3=1500`
`Coef(x^20)=C(10,10).3^10=3^10` then, `a_20=3^10`
2. If `(1+x+2x^2)^20=a_0+a_1x+a_2x^2+......+a_40x^40` Let's find the value of: `a_0+a_2+a_4+ -----+a_38`
Solution
We already had: `(1+x+2x^2)^20=a_0+a_1x+a_2x^2+......+a_40x^40`
If `x=1` then, `a_0+a_1+a_2+.....+a_40=4^20`
If `x=-1` then `a_0-a_1+a_2-a_3+......-a_39+a_40=2^20`
Sum side to side: `2a_0+2a_2+2a_4+.............+2a_40=4^20+2^20`
Then. `a_0+a_2+a_4+.......+a_40=(4^20+2^20)/2`
Therefore, `a_0+a_2+a_4+......+a_38=(4^20+2^20)/2-a_40`
`=(2^40+2^20)/2-2^20`
`=(2^40+2^20)/2`
Hence, `a_0+a_2+a_4+.....+a_38=(2^40+2^20)/2`
No comments:
Post a Comment