Problem 01
Real numbers 
 are given. For each 
 (
) define
![]()
and let
.
(a) Prove that, for any real numbers 
,
![]()
(b) Show that there are real numbers 
 such that equality holds in (*)
Solution
Since 
, all 
 can be expressed as 
, where 
.
Thus, 
 can be expressed as 
 for some 
 and 
, ![]()
Lemma) ![]()
Assume for contradiction that 
, then for all 
, ![]()
![]()
Then, 
 is a non-decreasing function, which means, 
, and 
, which means, 
.
Then, 
 and contradiction.
a)
Case 1) ![]()
If 
, 
 is the maximum of a set of non-negative number, which must be at least 
.
Case 2) 
 (We can ignore 
 because of lemma)
Using the fact that 
 can be expressed as 
 for some 
 and 
, 
. ![]()
Assume for contradiction that 
.
Then, 
, 
.
, and ![]()
Thus, 
 and 
.
Subtracting the two inequality, we will obtain:
![]()
 --- contradiction (
).
Thus, ![]()
(b)
A set of 
 where the equality in (*) holds is:
![]()
Since 
 is a non-decreasing function, 
 is non-decreasing.
 :
Let 
, 
.
Thus, 
 (
 because 
 is the max of a set including 
)
![]()
![]()
![]()
![]()
Since 
 and 
 
, ![]()
Problem 02
Solution
![[asy] import cse5; import graph; import olympiad; dotfactor = 3; unitsize(1.5inch);  path circle = Circle(origin, 1); draw(circle);  pair D = (-sqrt(3)/2, -0.5), C = (sqrt(3)/2, -0.5); //G = bisectorpoint(C, B, D); pair Ee = rotate(38,C)*D; pair E = IP(C--Ee, circle,1); pair Gg = rotate(76,C)*D; path circle2 = Circle(E, length(C-E)); pair G = IP(C--Gg, circle2, 1); pair F = IP(C--D, circle2, 1); pair Bb = rotate(-104,C)*D; pair B = IP(C--Bb, circle, 1);  pair A = extension((-1,B.y),(1,B.y),G,F); draw(circle2, dashed); draw(A--G); draw(C--D--A--B); draw(G--B);  draw(E--F); draw(E--C); draw(E--G);  dot("$C$", C, dir(30)); dot("$D$", D, SW); dot("$G$", G, SE);  dot("$E$", E, SW); dot("$F$", F, SW); dot("$A$", A, SW); dot("$B$", B, SE);  draw(D--E,dashed); draw(B--E,dashed);  [/asy]](https://latex.artofproblemsolving.com/c/4/d/c4d6cd122415e7b7ccce4bdc0b15896ba36b846d.png)
Since 
, 
, it suffices to prove 
.
Let 
, 
, 
. We have:
so,
Meantime, using Law of Sines on 
, we have,
Using Law of Sines on 
, and notice that 
, we have,
so,
Since 
, and 
, we have, 
. Hence,
or,![]()
![]()
There are two possibilities: (1) 
, or (2) 
. However, (2) would mean 
, then 
 would be a diameter, and 
 because 
 is inside the circle, so (2) is not valid. From condition (1), we have 
, therefore 
. 
Problem 03
Problem 04
Solution
 so 
 or 
. Cross multiplying we have Problem 05
Let 
 and 
 be positive integers with 
 and 
 an even number. Let 
 lamps labelled 
, 
, ..., 
 be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).
Let 
 be the number of such sequences consisting of 
 steps and resulting in the state where lamps 
 through 
 are all on, and lamps 
 through 
 are all off.
Let 
 be number of such sequences consisting of 
 steps, resulting in the state where lamps 
 through 
 are all on, and lamps 
 through 
 are all off, but where none of the lamps 
 through 
 is ever switched on.
Determine 
.
Solution
For convenience, let 
 denote the set 
 and 
 the set 
.
We can describe each sequences of switching the lamps as a 
-dimensional vector 
, where 
 signifies which lamp was switched on the 
-th move for 
.
Let 
 consist of those sequences that contain each of the numbers in 
 an odd number of times and each of the numbers in 
 an even number of times. Similarly, let 
 denote the set of those sequences that contain no numbers from 
 and each of the numbers in 
 an odd number of times. By definition, 
 and 
.
Define the mapping 
 as![\[f(a_1, a_2, \ldots, a_k) = (b_1,b_2,\ldots b_k) :  b_i =  \begin{cases}    a_i, & \mbox{ if }  a_i \in A \\    a_i-n, & \mbox{ if } a_i  \in B \end{cases}\]](https://latex.artofproblemsolving.com/9/1/b/91b150edc6d81fefa047349d92d4770f0fd387b5.png)
What we want to show now is that each element of 
 is an image of exactly 
 elements from 
, which would imply 
 and solve the problem.
Consider an arbitrary element 
 of 
 and let 
 be the number of appearances of the number 
 in 
 for 
. Now consider the set of pre-images of 
, that is 
.
It is easy to see that each element 
 is derived from 
 by flipping an even number of its 
-s, 
-s, and so on, where flipping means changing the number 
 to 
. Since each such set of flippings results in a unique 
, all we want to count is the number of flippings. We can flip exactly 
 of the 
-s, so that results in
flippings. Combine each of them with the 
, 
, etc. ways of flipping the 
-s, 
-s etc. respectively to get the total number of flippings:
This shows that 
 and the proof is complete.
Problem 06
Solution
We will prove the result using the following Lemma, which has an easy proof by induction.
Lemma Let 
, 
 and 
. If 
 is a polynomial in 
 that vanishes on all points of the grid 
 except at the origin, then![]()
Proof. We will prove this by induction on 
. If 
, then the result follows trivially. Say 
. WLOG, we can assume that 
. By polynomial division over 
 we can write
Since 
 is a monomial, the remainder 
 must be a constant in 
, i.e., 
 is a polynomial in two variables 
, 
. Pick an element of 
 of the form 
 and substitute it in the equation. Since 
 vanishes on all such points, we get that 
 for all 
. Let 
 and 
. For every point 
 in 
 we have
where 
. Therefore, the polynomial 
 vanishes on all points of 
 except the origin. By induction hypothesis, we must have 
. But, 
 and hence we have 
.
Now, to solve the problem let 
 be 
 planes that cover all points of 
 except the origin. Since these planes don't pass through origin, each 
 can be written as 
. Define 
 to be the polynomial 
. Then 
 vanishes at all points of 
 except at the origin, and hence 
.
No comments:
Post a Comment