Find the last two digits of : N=(1!+2!+3!+.......+101!)101
Note: This is equivalent to finding N(mod11).
ie: The remainder when dividing N by 100.
Observation: 10!≡0(mod100) Because, 10≠10...5...2
Therefore, N≡(1!+2!+3!+......+9!)101(mod100)
N≡(1+2+6+24+20+20+40+20+80)101(mod100)
N≡13101(mod100)
As we can see:
132=169
134=..61
135=....93
1320=(135)4=....01
Then, N≡13(1320)5(mod100)
Hence, The last two digits of N is 13.
No comments:
Post a Comment