Processing math: 100%

Saturday, August 28, 2021

Find the last two digits of : N=(1!+2!+3!+.......+101!)101

Find the last two digits of : N=(1!+2!+3!+.......+101!)101 

Note: This is equivalent to finding N(mod11).

ie: The remainder when dividing N by 100.

Observation: 10!0(mod100) Because, 1010...5...2

Therefore, N(1!+2!+3!+......+9!)101(mod100)

                   N(1+2+6+24+20+20+40+20+80)101(mod100)

                   N13101(mod100)

As we can see:

                132=169

                134=..61

                135=....93

                1320=(135)4=....01

Then,     N13(1320)5(mod100)

Hence, The last two digits of N is 13.

No comments:

Post a Comment