1. Prove that: `1/2+1/5+1/8+1/11+1/20+1/40+1/110+1/1640=1`
Solution
We observe that:
`1/2+1/5+1/8+1/11+1/20+1/40+1/110+1/1640`
`=1/2+1/20+1/5+1/8+1/11+1/110+1/20+1/1640`
`=22/40+13/40+11/110+41/1640`
`=22/40+13/40+4/40+1/40`
`=40/40=1`
Hence, `1/2+1/5+1/8+1/11+1/20+1/40+1/110+1/1640=1`
2. Find the minimum value of `A=|x-1|+|x-2|+|x-3|+.....+|x-100|`
Solution
We observe that:
`|x-k|+|x-(101-k)|``\geq``|101-2k|` while `|a|+|b|``\geq``|a-b|`
The equal case happens when `x\in``[x,101-k]`
For all `k=1,2,3,....,50` we will get that:
`|x-1|+|x-100|``\geq``99`
`|x-2|+|x-99|``\geq``97`
`|x-3|+|x-98|``\geq``95`
`.................................................................`
`.................................................................`
`|x-50|+|x-51|``geq``1`
Make the sum of side to side, we will get:
`A\geq``99+97+95+......+1``=50/2(1+99)``=2500`
The equal case happens when `x\in``\cap[k,101-k]` which `1``\geq``k``\geq``501``=[50,51]`
Hence, the minimum value of `A=|x-1|+|x-2|+|x-3|+.....+|x-100|=2500`when `x\in``=[50,51]`
`A_{min}=2500` when `x\in``=[50,51]`
No comments:
Post a Comment