1. Prove that: 12+15+18+111+120+140+1110+11640=1
Solution
We observe that:
12+15+18+111+120+140+1110+11640
=12+120+15+18+111+1110+120+11640
=2240+1340+11110+411640
=2240+1340+440+140
=4040=1
Hence, 12+15+18+111+120+140+1110+11640=1
2. Find the minimum value of A=|x-1|+|x-2|+|x-3|+...
Solution
We observe that:
|x-k|+|x-(101-k)|\geq|101-2k| while |a|+|b|\geq|a-b|
The equal case happens when x\in[x,101-k]
For all k=1,2,3,....,50 we will get that:
|x-1|+|x-100|\geq99
|x-2|+|x-99|\geq97
|x-3|+|x-98|\geq95
.................................................................
.................................................................
|x-50|+|x-51|geq1
Make the sum of side to side, we will get:
A\geq99+97+95+......+1=50/2(1+99)=2500
The equal case happens when x\in\cap[k,101-k] which 1\geqk\geq501=[50,51]
Hence, the minimum value of A=|x-1|+|x-2|+|x-3|+.....+|x-100|=2500when x\in=[50,51]
A_{min}=2500 when x\in=[50,51]
No comments:
Post a Comment