Monday, March 8, 2021

2001 Dutch Math Olympiad

 

Suppose for all x,yR we have f(x+y)=f(x)+f(y)+xy and f(4)=10
Let find the value of f(2001)
Solution
We will use this theorem to solve the following problem


For all x,yR we have f(n+1)=f(n)+f(1)+n then
                                    f(n+1)-f(n)=f(1)+n we knew that: f(n)=f(n+1)-f(n)
Then, n=02000f(n)=f(2001)-f(0)
Or f(2001)=n=02000f(n+f(1))+f(0)  ()
 As we had: f(x+y)=f(x)+f(y)+xy when x=y=2 then, f(4)=2f(2)+4
                    f(4)=10f(2)=3
We play the same role to find f(1)
When x=y=1 then, f(2)=2f(1)+1f(1)=1
As the same play, we will get f(0)=0
From the equation of () , therefore: f(2001)=n=02000(n+1)+f(0)
                    f(2001)=n=02000(n+1)=2000(2001)2
    
Solution by: Thin Sokkean

No comments:

Post a Comment