Sunday, March 14, 2021

Irish Math Olympiad 2009

 Find all positive integer nn such that n8+n+1n8+n+1 is a prime.

Irish Math Olympiad 2009
Irish Math Olympiad 2009





Let f(x)=x8+x+1f(x)=x8+x+1 

If ww is the 3rd3rd root of 11 (w=e2iπ3)(w=e2iπ3)

Then, w2+w+1=0w2+w+1=0 

            w8=w2w8=w2 or 82(mod3)82(mod3)

Here, f(w)=w8+w+1=w2+w+1=0f(w)=w8+w+1=w2+w+1=0

Then, ww is a root of f(x)=x8+x+1f(x)=x8+x+1and x2+x+1x2+x+1

Therefore, f(x)=(x2+x+1)g(x)f(x)=(x2+x+1)g(x)

We can see that: f(x)=x8+x+1=(x2+x+1)(x6-x5+x3-x2+1)f(x)=x8+x+1=(x2+x+1)(x6x5+x3x2+1)

Note, f(1)=3f(1)=3 is a prime.

If n>1n>1 we have n8>n2n8>n2 or n8+n+1>n2+n+1>1n8+n+1>n2+n+1>1 

                            n8+n+1=(n2+n+1)(n6-n5+n3-n2+1)n8+n+1=(n2+n+1)(n6n5+n3n2+1)

So, n8+n+1n8+n+1 is composite for all n>1n>1.

Solution by: Thin Sokkean

Check PDF file to download here

No comments:

Post a Comment