Find all positive integer nn such that n8+n+1n8+n+1 is a prime.
Irish Math Olympiad 2009 |
Let f(x)=x8+x+1f(x)=x8+x+1
If ww is the 3rd3rd root of 11 (w=e2iπ3)(w=e2iπ3)
Then, w2+w+1=0w2+w+1=0
w8=w2w8=w2 or 8≡2(mod3)8≡2(mod3)
Here, f(w)=w8+w+1=w2+w+1=0f(w)=w8+w+1=w2+w+1=0
Then, ww is a root of f(x)=x8+x+1f(x)=x8+x+1and x2+x+1x2+x+1
Therefore, f(x)=(x2+x+1)g(x)f(x)=(x2+x+1)g(x)
We can see that: f(x)=x8+x+1=(x2+x+1)(x6-x5+x3-x2+1)f(x)=x8+x+1=(x2+x+1)(x6−x5+x3−x2+1)
Note, f(1)=3f(1)=3 is a prime.
If n>1n>1 we have n8>n2n8>n2 or n8+n+1>n2+n+1>1n8+n+1>n2+n+1>1
n8+n+1=(n2+n+1)(n6-n5+n3-n2+1)n8+n+1=(n2+n+1)(n6−n5+n3−n2+1)
So, n8+n+1n8+n+1 is composite for all n>1n>1.
Solution by: Thin Sokkean
Check PDF file to download here
No comments:
Post a Comment