Monday, March 22, 2021

When is n2+2021n a perfect square?

When is n2+2021n a perfect square?

Solution 

As we knew, 2021=43×47

Let find m;nN such that: n2+2021n=m2

                            4n2+4×2021n=4m2

Or                         4n2+4×2021n+20212=4m2+20212

                            (2n+2021)2=4m2+20212

                            (2n+2021)24m2=20212

            (2n2m+2021)(2n+2m+2021)=20212

+Case: 1 20212=1×20212

            2n2m+2021=1 and 2n+2m+2021=20212

Sum of these two equations: 4n+2×2021=20212+1

                        4n=(20211)2n=1020100

+Case: 2 20212=43×(43×47)2

Then,     2n2m+2021=43 and 2n+2m+2021=(43×47)2

Solve as the case 1 we will get n=22747

Hence, n2+2021n is a perfect square when n=1020100 and n=22747.

Here you can download the PDF file (Solution by Thin Sokkean)


No comments:

Post a Comment