Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, November 27, 2020

Let (an) be a sequence of real number satisfied that: a0=1 and an+1=a0a1......an+4 for all natural number n. Prove that: an-an+1=2 for all n>0

 Let (an) be a sequence of real number satisfied that: a0=1 and 

an+1=a0a1......an+4 for all natural number n.

Prove that: an-an+1=2 for all n>0.

Solution

We observation that ak>0 for all natural number n

And from an+1=a0a1......an+4

Replace n=n+1 then an+2=a0a1......an+1+4

                                    an+2=(a0a1.....an)(a0a1....an+4)+4

                                    an+2=(a0a1.....an)2+4(a0a1.....an)+4

                                    an+2=(a0a1....an+2)2

Therefore,     a12n+2=a0a1....an+2

                        (an+2)12=(an+1+2) or (an+1)12=(an+2)

Hence, the problem is solved.

Solution by: Thin Sokkean

No comments:

Post a Comment