It is give function `f(x)` for all real number of `x` such that:
`x(2x+1)f(x)+f(1/x)=x+1`.
Find the sum of: `S=f(1)+f(2)+f(3)+.......+f(2022)`
Solution
From `x(2x+1)f(x)+f(1/x)=x+1` (1)then we replace `x=1/x` so will get new relation :
`1/x(2/x+1)f(1/x)+f(x)=1/x+1`
`f(1/x)+(x^2/(x+2))f(x)=(x^2+x)/(x+2)` (2)
From equation (1)-(2) side to side, then:
`[x(2x+1)-x^2/(x+2)]f(x)=x+1-(x^2+x)/(x+2)`
`2x(x^2+1)/(x+2)f(x)=(2x+2)/(x+2)`
Therefore: `f(x)=1/(x(x+1))=1/x-1/(x+1)`
Then, `\sum_{i=1}^{2022}f(k)`= `\sum_{i=1}^{2022}(1/k-1/(k+1))` = `1-1/2022=2021/2022`
Hence, the sum of: `S=f(1)+f(2)+f(3)+.......+f(2022)=2021/2022`
Solution by: Thin Sokkean
No comments:
Post a Comment