It is give function f(x) for all real number of x such that:
x(2x+1)f(x)+f(1x)=x+1.
Find the sum of: S=f(1)+f(2)+f(3)+.......+f(2022)
Solution
From x(2x+1)f(x)+f(1x)=x+1 (1)then we replace x=1x so will get new relation :
1x(2x+1)f(1x)+f(x)=1x+1
f(1x)+(x2x+2)f(x)=x2+xx+2 (2)
From equation (1)-(2) side to side, then:
[x(2x+1)-x2x+2]f(x)=x+1-x2+xx+2
2xx2+1x+2f(x)=2x+2x+2
Therefore: f(x)=1x(x+1)=1x-1x+1
Then, 2022∑i=1f(k)= 2022∑i=1(1k-1k+1) = 1-12022=20212022
Hence, the sum of: S=f(1)+f(2)+f(3)+.......+f(2022)=20212022
Solution by: Thin Sokkean
No comments:
Post a Comment