It is given polynomial P(x)=(xsina+cosa)nP(x)=(xsina+cosa)n for natural number n.
Finding the remaining when P(x)P(x) divide to (x2+1)(x2+1)
Solution
Let R(x)R(x) be the remainder of division between P(x)P(x) and (x2+1)(x2+1)
- If n=1n=1 then P(x)=xsina+cosaP(x)=xsina+cosa
- If nn ≥ 22 then P(x)=(x2+1)Q(x)+R(x)P(x)=(x2+1)Q(x)+R(x)
Then, (xsina+cosa)n=(x2+1)Q(x)+Ax+B(xsina+cosa)n=(x2+1)Q(x)+Ax+B
If x=ix=i then cosna+isinna=B+iAcosna+isinna=B+iA
Therefore, A=sin(na);B=cos(na)A=sin(na);B=cos(na)
Hence, the remainder is R(x)=sin(na)x+cons(na)R(x)=sin(na)x+cons(na) .
Solution by: Thin Sokkean
No comments:
Post a Comment