Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, November 27, 2020

It is given polynomial P(x)=(xsina+cosa)n for natural number n. Finding the remaining when P(x) divide to (x2+1)

 It is given polynomial P(x)=(xsina+cosa)n for natural number n.

Finding the remaining when P(x) divide to (x2+1)

Solution

Let R(x) be the remainder of division between P(x) and (x2+1)

  • If n=1 then P(x)=xsina+cosa
Therefore, the remainder R(x)=xsina+cosa

  • If n 2 then P(x)=(x2+1)Q(x)+R(x)
which Q(x) is the result and R(x)=Ax+B

Then, (xsina+cosa)n=(x2+1)Q(x)+Ax+B

If x=i then cosna+isinna=B+iA

Therefore, A=sin(na);B=cos(na)

Hence, the remainder is R(x)=sin(na)x+cons(na) .

Solution by: Thin Sokkean 

No comments:

Post a Comment