It is given polynomial `P(x)=(xsina+cosa)^n` for natural number n.
Finding the remaining when `P(x)` divide to `(x^2+1)`
Solution
Let `R(x)` be the remainder of division between `P(x)` and `(x^2+1)`
- If `n=1` then `P(x)=xsina+cosa`
- If `n` ≥ `2` then `P(x)=(x^2+1)Q(x)+R(x)`
Then, `(xsina+cosa)^n=(x^2+1)Q(x)+Ax+B`
If `x=i` then `cosna+isinna=B+iA`
Therefore, `A=sin(na) ;B=cos(na)`
Hence, the remainder is `R(x)=sin(na)x+cons(na)` .
Solution by: Thin Sokkean
No comments:
Post a Comment