Processing math: 100%

Friday, November 27, 2020

It is given three positive real number x,y,z such that : cosx+cosy+cosz=0 and cos3x+cos3y+cos3z=0

 It is given three positive real number x,y,z such that : cosx+cosy+cosz=0 and cos3x+cos3y+cos3z=0.

Prove that: cos2x.cos2y.cos2z≤ 0

    Solution

Prove that : cos2x.cos2y.cos2z≤ 0

Following formula : 

cos3a=4cos3a-3cosa then we can see that:

cos3x=4cos3x-3cosx(1)

cos3y=4cos3y-3cosy(2)

cos3z=4cos3z-3cosz(3)

Make the sum of 3 equations above side to side, we will get:
4cos3x+4cos3y+4cos3z=0 because 
cosx+cosy+cosz=0 and cos3x+cos3y+cos3z=0

From cosx+cosy+cosz=0 then cosx+cosy=-cosz

Let's make the 3rd power to the equation above: 
            (cosx+cosy)3=-cos3z

               cos3z+3cosxcosy(cosx+cosy)+cos3y=-cos3z

                cos3z-3cosxcosycosz+cos3y=-cos3z

                cos3z+cos3y+cos3z=3cosxcosycosz

 But, we knew that: cos3x+cos3y+cos3z=0

Then, 3cosxcosycosz=0 cosx=0 or cosy=0 or cosz=0

We assume that: cosx=0 and cosy=-cosz

Then, cos2xcos2ycos2z=(2cos2x-1)(2cos2y-1)(2cos2z-1)

            cos2xcos2ycos2z=-(2cos2z-1)2≤ 0

Hence, the problem is proved.

Solution by: Thin Sokkean


No comments:

Post a Comment