It is given three positive real number x,y,z such that : cosx+cosy+cosz=0 and cos3x+cos3y+cos3z=0.
Prove that: cos2x.cos2y.cos2z≤ 0
Solution
Prove that : cos2x.cos2y.cos2z≤ 0
Following formula :
cos3a=4cos3a-3cosa then we can see that:
cos3x=4cos3x-3cosx(1)
cos3y=4cos3y-3cosy(2)
cos3z=4cos3z-3cosz(3)
Make the sum of 3 equations above side to side, we will get:
4cos3x+4cos3y+4cos3z=0 because cosx+cosy+cosz=0 and cos3x+cos3y+cos3z=0
From cosx+cosy+cosz=0 then cosx+cosy=-cosz
Let's make the 3rd power to the equation above:
(cosx+cosy)3=-cos3z
cos3z+3cosxcosy(cosx+cosy)+cos3y=-cos3z
cos3z-3cosxcosycosz+cos3y=-cos3z
cos3z+cos3y+cos3z=3cosxcosycosz
But, we knew that: cos3x+cos3y+cos3z=0
Then, 3cosxcosycosz=0 ⇒ cosx=0 or cosy=0 or cosz=0
We assume that: cosx=0 and cosy=-cosz
Then, cos2xcos2ycos2z=(2cos2x-1)(2cos2y-1)(2cos2z-1)
cos2xcos2ycos2z=-(2cos2z-1)2≤ 0
Hence, the problem is proved.
Solution by: Thin Sokkean
No comments:
Post a Comment