Thursday, December 22, 2022

Find all function f(x)f(x) if (x-y)f(x+y)-(x+y)f(x-y)=4xy(x2-y2)(xy)f(x+y)(x+y)f(xy)=4xy(x2y2)

 Find all function f(x)f(x) if (x-y)f(x+y)-(x+y)f(x-y)=4xy(x2-y2)(xy)f(x+y)(x+y)f(xy)=4xy(x2y2)

Solution

Let's  u=x+yu=x+yand v=x-yv=xy 

Then, x=u+v2x=u+v2  and y=u-v2y=uv2

From the equation : f(x)f(x) if (x-y)f(x+y)-(x+y)f(x-y)=4xy(x2-y2)(xy)f(x+y)(x+y)f(xy)=4xy(x2y2)

We will get: vf(u)-uf(v)=(u2-v2)uvvf(u)uf(v)=(u2v2)uv

                  

 f(u)u-u2=f(v)v-v2f(u)uu2=f(v)vv2  for all u,vu,v different from 00

Let: v=1v=1f(u)u-u2=f(1)-1f(u)uu2=f(1)1

Therefore:  f(u)=u3+auf(u)=u3+au  for all u0u0 and (a=f(1)-a)(a=f(1)a)

If x=y=0x=y=0 2f(0)=02f(0)=0  Then f(0)=0f(0)=0

Hence,   f(x)=x3+axf(x)=x3+ax.

No comments:

Post a Comment