Find all function f(x)f(x) if (x-y)f(x+y)-(x+y)f(x-y)=4xy(x2-y2)(x−y)f(x+y)−(x+y)f(x−y)=4xy(x2−y2)
Solution
Let's u=x+yu=x+yand v=x-yv=x−y
Then, x=u+v2x=u+v2 and y=u-v2y=u−v2
From the equation : f(x)f(x) if (x-y)f(x+y)-(x+y)f(x-y)=4xy(x2-y2)(x−y)f(x+y)−(x+y)f(x−y)=4xy(x2−y2)
We will get: vf(u)-uf(v)=(u2-v2)uvvf(u)−uf(v)=(u2−v2)uv
f(u)u-u2=f(v)v-v2f(u)u−u2=f(v)v−v2 for all u,vu,v different from 00
Let: v=1v=1→f(u)u-u2=f(1)-1→f(u)u−u2=f(1)−1
Therefore: f(u)=u3+auf(u)=u3+au for all u≠0u≠0 and (a=f(1)-a)(a=f(1)−a)
If x=y=0x=y=0 →2f(0)=0→2f(0)=0 Then f(0)=0f(0)=0
Hence, f(x)=x3+axf(x)=x3+ax.
No comments:
Post a Comment