Find all function f(x) if (x−y)f(x+y)−(x+y)f(x−y)=4xy(x2−y2)
Solution
Let's u=x+yand v=x−y
Then, x=u+v2 and y=u−v2
From the equation : f(x) if (x−y)f(x+y)−(x+y)f(x−y)=4xy(x2−y2)
We will get: vf(u)−uf(v)=(u2−v2)uv
f(u)u−u2=f(v)v−v2 for all u,v different from 0
Let: v=1→f(u)u−u2=f(1)−1
Therefore: f(u)=u3+au for all u≠0 and (a=f(1)−a)
If x=y=0 →2f(0)=0 Then f(0)=0
Hence, f(x)=x3+ax.
No comments:
Post a Comment