Thursday, December 22, 2022

Find all function f(x) if (xy)f(x+y)(x+y)f(xy)=4xy(x2y2)

 Find all function f(x) if (xy)f(x+y)(x+y)f(xy)=4xy(x2y2)

Solution

Let's  u=x+yand v=xy 

Then, x=u+v2  and y=uv2

From the equation : f(x) if (xy)f(x+y)(x+y)f(xy)=4xy(x2y2)

We will get: vf(u)uf(v)=(u2v2)uv

                  

 f(u)uu2=f(v)vv2  for all u,v different from 0

Let: v=1f(u)uu2=f(1)1

Therefore:  f(u)=u3+au  for all u0 and (a=f(1)a)

If x=y=0 2f(0)=0  Then f(0)=0

Hence,   f(x)=x3+ax.

No comments:

Post a Comment