Find all function `f(x)` if `(x-y)f(x+y)-(x+y)f(x-y)=4xy(x^2-y^2)`
Solution
Let's `u=x+y`and `v=x-y`
Then, `x=(u+v)/2` and `y=(u-v)/2`
From the equation : `f(x)` if `(x-y)f(x+y)-(x+y)f(x-y)=4xy(x^2-y^2)`
We will get: `vf(u)-uf(v)=(u^2-v^2)uv`
`f(u)/u-u^2=f(v)/v-v^2` for all `u,v` different from `0`
Let: `v=1``rightarrowf(u)/u-u^2=f(1)-1`
Therefore: `f(u)=u^3+au` for all `u!=0` and `(a=f(1)-a)`
If `x=y=0` `rightarrow2f(0)=0` Then `f(0)=0`
Hence, `f(x)=x^3+ax`.
No comments:
Post a Comment