Sunday, September 11, 2022

If `x+1/x=2` Find the value of `x^5+1/x^5`

 If `x+1/x=2` Find the value of `x^5+1/x^5`

As we had: `x+1/x=2` `rightarrow(x+1/x)^2=4` `leftrightarrowx^2+1/x^2=2`

We continue with `(x^2+1/x^2)(x+1/x)=4` `leftrightarrowx^3+x+1/x+1/x^3=4`

                                `leftrightarrowx^3+1/x^3=2`


We do that again: `(x^3+1/x^3)(x+1/x)=4` `leftrightarrowx^5+x+1/x+1/x^5=4` 

Therefore, `x^5+1/x^5=2` Because `x+1/x=2`

Solution By: Thin Sokkean

Download PDF File Here:

No comments:

Post a Comment