If `x+1/x=2` Find the value of `x^5+1/x^5`
As we had: `x+1/x=2` `rightarrow(x+1/x)^2=4` `leftrightarrowx^2+1/x^2=2`
We continue with `(x^2+1/x^2)(x+1/x)=4` `leftrightarrowx^3+x+1/x+1/x^3=4`
`leftrightarrowx^3+1/x^3=2`
We do that again: `(x^3+1/x^3)(x+1/x)=4` `leftrightarrowx^5+x+1/x+1/x^5=4`
Therefore, `x^5+1/x^5=2` Because `x+1/x=2`
Solution By: Thin Sokkean
Download PDF File Here:
No comments:
Post a Comment