Problem: 01
Prove that the polynomial x9999+x8888+x7777+...+x1111+1 is divisible by x9+x8+x7+....+x+1
Find all function f(x) if (x−y)f(x+y)−(x+y)f(x−y)=4xy(x2−y2)
Solution
If x+1x=2 Find the value of x5+1x5
As we had: x+1x=2 →(x+1x)2=4 ↔x2+1x2=2
We continue with (x2+1x2)(x+1x)=4 ↔x3+x+1x+1x3=4
↔x3+1x3=2