If `x+1/x=2` Find the value of `x^5+1/x^5`
As we had: `x+1/x=2` `rightarrow(x+1/x)^2=4` `leftrightarrowx^2+1/x^2=2`
We continue with `(x^2+1/x^2)(x+1/x)=4` `leftrightarrowx^3+x+1/x+1/x^3=4`
`leftrightarrowx^3+1/x^3=2`
If `x+1/x=2` Find the value of `x^5+1/x^5`
As we had: `x+1/x=2` `rightarrow(x+1/x)^2=4` `leftrightarrowx^2+1/x^2=2`
We continue with `(x^2+1/x^2)(x+1/x)=4` `leftrightarrowx^3+x+1/x+1/x^3=4`
`leftrightarrowx^3+1/x^3=2`
If `a+b+c=2022` and `1/a+1/b+1/c=1/2022` Find the value of `1/(a^2023)+1/(b^2023)+1/(c^2023)`
Solution