Processing math: 36%

Sunday, August 29, 2021

Find all polynomials P(x) such that: P(x-1).P(x+1)=P(x2-1)

 Find all polynomials P(x) such that: P(x-1).P(x+1)=P(x2-1)

Solution

Suppose that α is a root of P(x)  then, P(α)=0

Therefore, P((α+1)-1)=0

Saturday, August 28, 2021

Find the last two digits of : N=(1!+2!+3!+...

Find the last two digits of : N=(1!+2!+3!+.......+101!)^101 

Note: This is equivalent to finding N(mod11).

ie: The remainder when dividing N by 100.

Observation: 10!\equiv0(mod100) Because, 10!=10...5...2

Therefore, N\equiv(1!+2!+3!+......+9!)^101(mod100)

                   N\equiv(1+2+6+24+20+20+40+20+80)^101(mod100)

                   N\equiv13^101(mod100)