Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, November 27, 2020

It is given two positive real numbers x,y which are satisfied that 4x+3y=11. Find the maximum value of the following function: f(x,y)=(x+6)(y+7)(3x+2y)

 It is given two positive real numbers x,y which are satisfied that 4x+3y=11

Find the maximum value of the following function: 

f(x,y)=(x+6)(y+7)(3x+2y)

Solution

Find the maximum value of the following function: 

f(x,y)=(x+6)(y+7)(3x+2y)

To do so, we need to use AM-GM inequation: 

                                    x+y+z 3.(xyz)13

                                    4x+3y+133f(x,y)13

Then, we can see that :    f(x,y) (4x++3y+133)3           

But, we knew that: 4x+3y=11

Therefore: f(x,y)(11+133)3=512

Hence:  the maximum value of the following function: 

f(x,y)=(x+6)(y+7)(3x+2y) is 512

Solution by: Thin Sokkean

                             

No comments:

Post a Comment